ERM and Bumi Armada UK

Driving energy & emissions performance on the Armada Kraken

Chris Ayres, Chief Customer Officer, ERM,
Dr Helen Drewery, HSE Manager, Bumi Armada UK,
& Scott Renfrew, Bumi Armada UK

Driving energy & emissions performance across FPSOs

CHRIS AYRES (ERM), SCOTT RENFREW (BUMI) & HELEN DREWERY (BUMI)
MAY 2024

Sustainability is our business

Agenda

- 1 Who we are
- 2 How it started
- 3 How it's going
- 4 What's next

Sustainability is our business

The Energy and Emissions Performance Team are a specialist team within ERM

Our mission is to help our customers operationalise their **carbon strategy**, drive **energy efficiency** and deliver on **compliance** requirements.

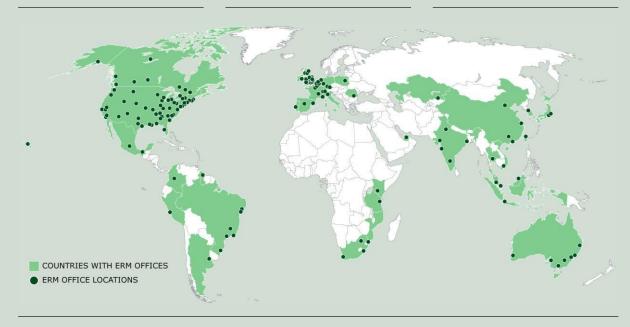
Our dedicated focus is on energy and carbon intensive industries with complex facilities

Professionals

40

Countries & territories

150+


Offices

50+

Years of experience

#1

Sustainability service provider – HFS 2022

We partner with...

70% of Fortune 100

55% of Fortune 500

Bumi Armada

Malaysia-based international offshore energy facilities and services provider

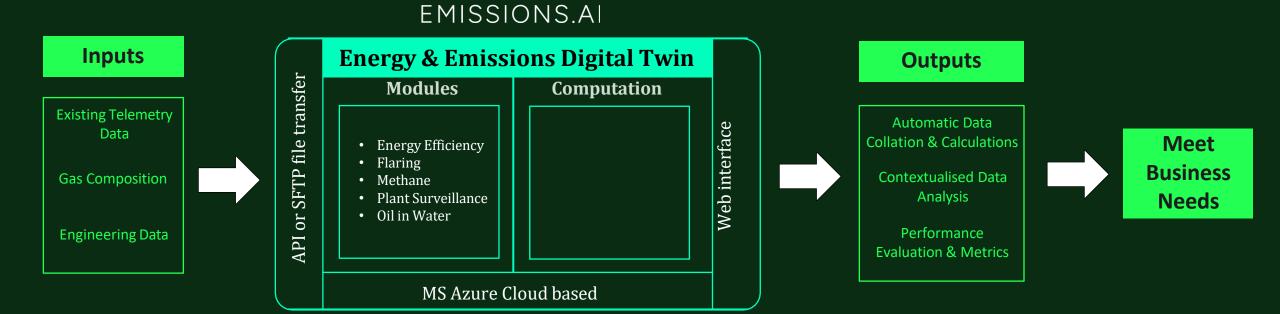
Dedicated to ensure we integrate sustainability into daily operations with key objectives in the UK

- Meet regulatory compliance requirements (ISO 14001, BAT etc)
- Integrate carbon emissions into decision making
- Establish carbon lean operations
- Demonstrate industry leading performance to meet commitments
- Deploy agile and relevant technologies

Owner and Operator of the Armada Kraken

emissions.AI

Kick off for deployment on Armada Kraken



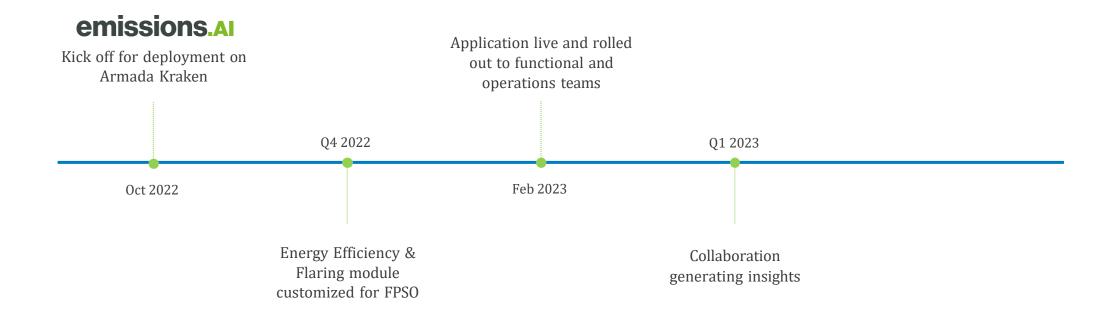
Engineering | Analytics | AI | Expert Led Support

A digital solution to help companies manage energy and emissions performance

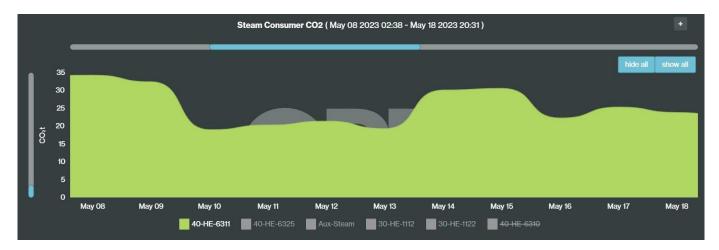
How it works

emissions.AI

Kick off for deployment on Armada Kraken



Energy Efficiency & Flaring module customized for FPSO



Seawater System & Process Temperatures

Identifying CO2 saving opportunities via steam boiler reductions

- HSP Power Fluid Outlet reduced by 2°C during well testing programme.
- ~10T/D CO2 reduction.
- Opportunity to make a change?

- Seawater heater was turned off for SRP maintenance, whilst WI remained online.
- \sim 25T/D CO2 reduction.
- Opportunity to make a change?

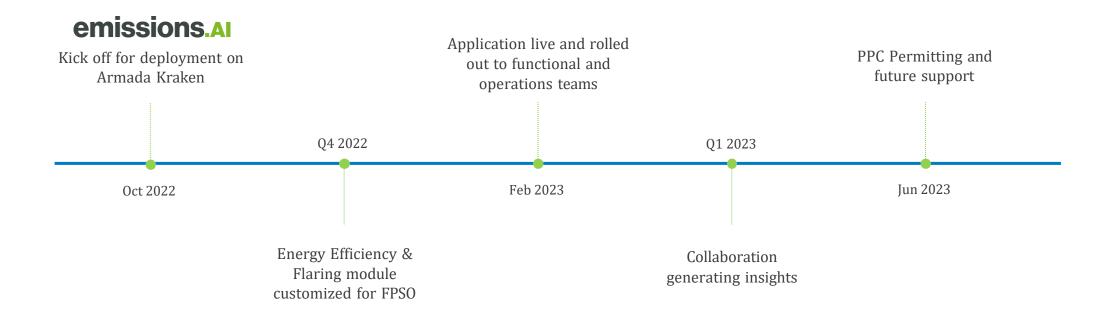
Temperature Trials - August 2023

<u>Objective:</u> Optimise steam demand across plant, reducing associated diesel consumption/CO2 emissions from the steam boilers

Areas to look at?

- HSP Heater;
- Seawater Heater;
- Oil Heaters;
- Cargo Tank Temperatures.

<u>Trial Findings - 18% load reduction</u>


- HSP Heater turned off no longer required in operation (9% reduction in steam demand).
- SW temperature reduced by 3.5°C (4% reduction in steam demand).
- Negligible reduction in oil heater steam demand.
- Average COT temperature reduced by 3°C (5% reduction in steam demand).

What does this mean?

- Significant diesel reduction in steam boilers can achieve full boiler gas burn during extensive period of load cycle.
- Subsequent reduction in CO2 emissions
- Potential to perform winter trial using emissions.AI and make permanent plant changes where possible.

Kraken Power Generation Performance 2022-01-01 to 2023-01-01 Kraken Steam Generation Performance 2022-01-01 to 2023-01-01

Note: The data used for the following analysis has been sourced from Smart Client at varying resolution (typically 5 minutely) and the plots are based on the same data aggregated to hourly resolution					Note: The data used for the following analysis has been sourced from Smart Client at varying resolution (typically 5 minutely) and the plots are based on the same data aggregated to hourly resolution							
											70B-HX-7111A	708-HX-7111B
Rated Power Output	15.2 MW	15.2 MW	15.2 MW	15.2 MW	Rated Power Output	49.59 MW	49.59 MW	49.59 MW	5.04 MW	5.04 MW	5.04 MW	5.04 MW
Mean Online Thermal Input	30.21 MWth	29.66 MWth	28.54 MWth	29.89 MWth	Mean Online Thermal Input	17.67 MWth	31.64 MWth	35.42 MWth				
Mean Online Power Output	13.39 MW		12.63 MW	13.25 MW	Mean Online Power Output		28.47 MW	30.75 MW	4.52 MW	3.99 MW	4.05 MW	4.07 MW
Mean Online Thermal Efficiency			44.02 %		Mean Online Thermal Efficiency	90.62 %						
Diesel Run Hours		3608 hrs		5038 hrs	Diesel Run Hours	5598 hrs						
Gas Fuel Run Hours					Gas Fuel Run Hours		2857 hrs	4866 hrs				
Mixed Fuel Run Hours					Mixed Fuel Run Hours							
Total Run Hours		3608 hrs		5038 hrs	Total Run Hours	6501 hrs	3891 hrs	6480 hrs	4286 hrs	3238 hrs		4003 hrs

A phased PEMS approach provides unique value

A state-of-the-art solution to establish a monitoring capability for pollutants in your facility.

Relational Models

Predict emissions as a function of one or more process parameters using theoretical or empirical relations.

Data driven Models

In data driven models, learning algorithms find statistical regularities between paired historical operating and stack sample data.

Theoretical

Empirical

Statistical

Supervised (Deep) Learning

All-in-one

Our PEMS incorporates seamlessly multiple calculation models into one interface.

Real time

We predict emissions that can be assessed live and used as a monitoring system.

No limitations

We can establish the right PEMS model even for complex equipment or pollutants.

Model Output

Breakdown of emissions behavor per piece of equipment

Working together for the future

