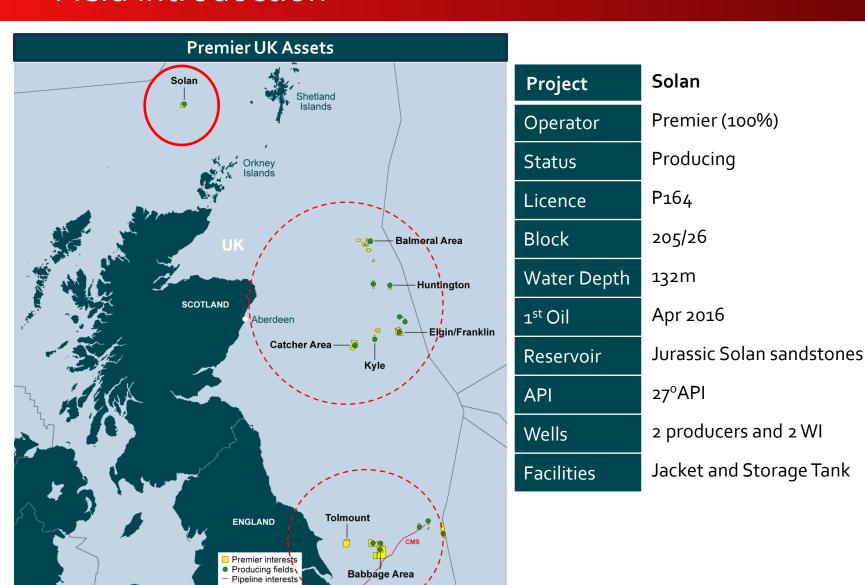


Solan Subsea Oil Storage Tank

David Dunn January 2019



Content

- Field Introduction
- Subsea Oil Storage Tank
- How does it work?
- Mechanical Design
- Process Design
- Into Production Operations
- Offloading from a 300k bbl subsea storage tank
- Observations & Conclusions

Field Introduction

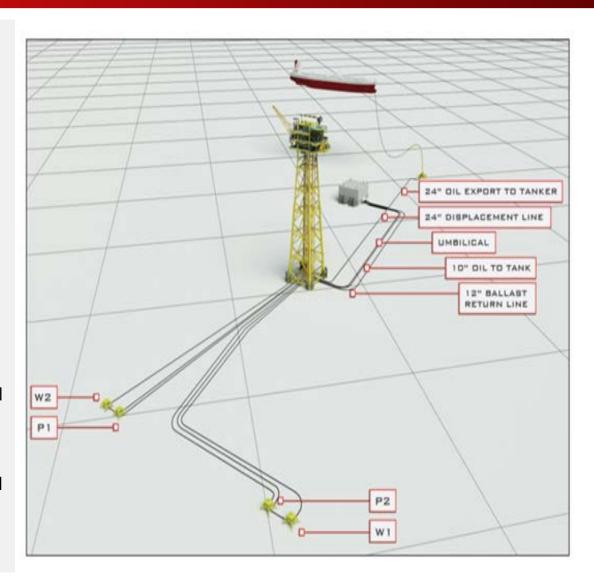
January 2019 | P2

Facilities Overview

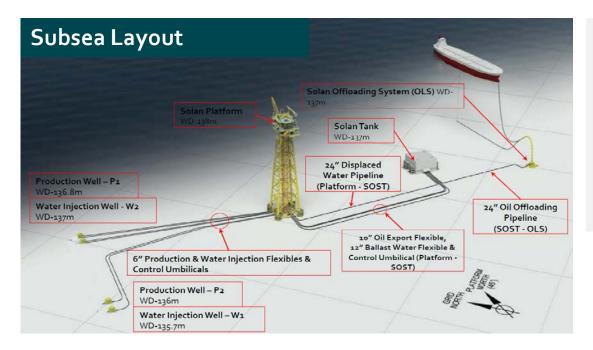
Platform (Jacket and Topsides)

- 7500 tonne conventional steel jacket in 138m of water
- Processing facilities, water injection system and power generation
- Produced water treatment for reinjection
- Designed as normally unmanned and operated remotely

Wells


- 4 subsea wells
- (2 x producers, 2 water injectors)

Storage Tank - SOST

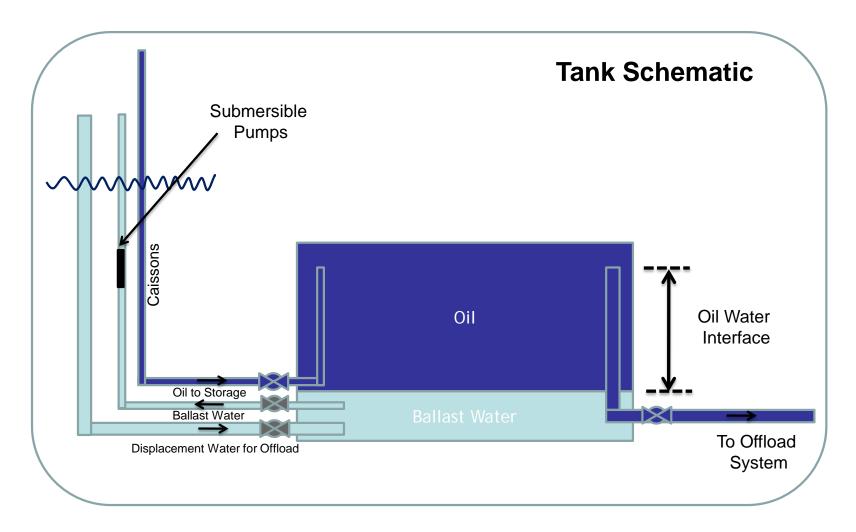

- 300,000 storage tank
- Winter period manage offloads to avoid shutdowns based on weather forecasts.

Tanker loading system

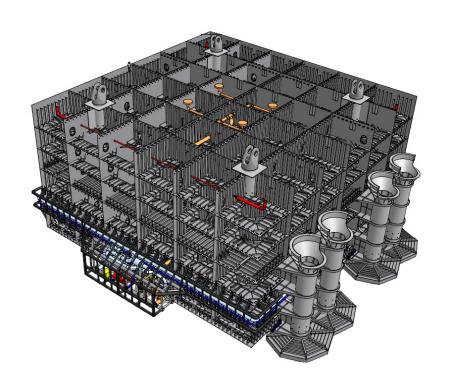
- Shuttle tankers connect and transport oil
- Teekay, the tanker operator is well regarded and experienced with the system.

Subsea Facilities

- 4 Horizontal wells
- Two drill centres located c. 300m from the platform.
- Producers completed with ESPs
- P1 single ESP (failed)
- P2 dual ESP system online.
- Individual flexible tie backs to the platform


Subsea Storage Tank

- The tank uses an 'oil over water' storage system. (SOST)
- As oil is produced, it is introduced to the top of the tank thereby displacing seawater from the bottom of the tank as ballast water.
- The ballast water is routed to the process system and injected into the reservoir.


So how does it work?

Its not a pumped solution...oil is displaced!!

Subsea Oil Storage Tank (SOST)

- 10,100 te carbon steel box
- 45 x 45 x 25m Theoretical volume 314,538
 bbls useable volume ~275,000 bbls
- 8x 96" piles driven to 45m + mud mats;
 bottom sits ~1m above sea-bed
- External ESDV porch and line connections are low on tank
- Tank designed for a 30 year lifecycle
- 10" Oil / 12" ballast and 24" displacement pipeline
- Oil export to tanker via 24"pipeline

SOST Construction

Early subsite cell fabrication

- SOST built in a major Dubai Dry dock
- Approx. 1500 personnel on site each day during peak construction
- Complex internal construction approx 120km of welding

Later cell stack up in main fab yard

Construction Completion

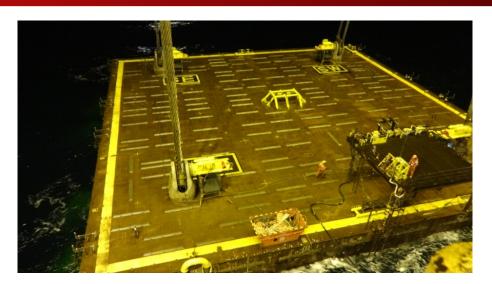
- Took 23 months from first steel cut to sailaway versus plan of 18 months hot market, weld access and also change to weld spec was key impacts
- Actual man-hours to complete ~4,000,000 for total project and ~2.3 million construction man hours all LTI free with controlled culture.

Installation, Hook up and Commissioning

HLV arrival in Lerwick

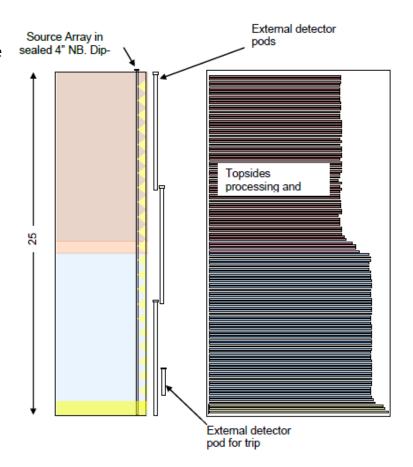
- 1 month journey via Suez on an HLV from Dubai to Lerwick
- 3 tug tow to field main tug on bridle and two on sides.
- 80 nm from Lerwick to the field took approx 26 hours

Positioning of SOST to HLV with tug assist



Installation, Hook up and Commissioning

- Crew transferred from HLV to SOST via basket
- Tugs connected at all times
- 16 flooding valves 4 x valves in each quadrant to displace air during install
- SOST pre dosed with oxy scav, biocide and leak detection dye
- Valves and vent platforms all removed once installation and piling complete
- All flowlines / pipeline connections completed by diver
- Leak tested by filling caisson t +28m LAT and inspected by ROV
- SOST dynamic commissioning by water to tanker prior to flowing hydrocarbons topside


Mechanical Design

- Cyclic loadings include
 - Sea-state
 - Oil-water level changes during offloading
- Steel is the economic choice with
 - Major external & internal cathodic protection
 - Lower internal 2m is coated
 - Internal pipework is CRA 25Cr
 - Biocide & corrosion inhibitor use
- Cathodic protection not unusual but...
 - No access to SOST internal....
 - 23,792 anodes inside....this number doubled during design.
 - 1421 external...again this doubled during design
- Fatigue...
 - Full 3D model created to assure lifecycle design and ongoing analysis through operations

Process Design

- Ballast water returns to topsides Treat to inject to reservoir or to sea
- Detailed pressure surge work mitigates resonance, hammer and fatigue risks
- Control & instrumentation;
 - o External pod nucleonic level array
 - + Independent LL external level trip
 - ESD logic and hardware installed
- Emulsion "rag" layer can be offloaded
- Open water caissons as ultimate spill is crucial to the SOST if topsides issues - +28m or equivalent to 2.8bar
- Nucleonic resolution to 120-240mm resolution can see rag layer
- SOST has its own dedicated umbilical
- ESD porch low on tank contains ESD and bypass valving/lines
- Ballast water line is open and only an ROV operable valve installed it is the tanks pressure protection.

Into Production Operations....

- 22 x ~250 kbbls cargo offloads since start up in 2016
- Field availability >96%; zero SOST tank tops deferral or tanker waiting....
- No rag layer clearly observed to date
- Subsea inspection carried out on an annual basis
- Hydrogen sulphide management has required biocide/scavenger batching
- Assumptions from the design stage have been shown to be robust regarding offloading, weather dependency and times required.

Oil Offloading....West Of Shetland via Shuttle Tanker

It's a millpond out there of course.....

Oil Offloading....West Of Shetland via Shuttle Tanker

...Or maybe not.....Storm Gertrude...22M waves recorded January 2016

Oil Offloading....West Of Shetland via Shuttle Tanker

- Hydraulic studies showed head delta drives 275,000 bbls oil via a 24" seabed flowline & 20" hose to the tanker bow in ~30 hrs.
- No platform/SOST host oil export metering
- Tanker connection uses standard SAL system with messenger line and HEV
- Offload operations & communications uses a "green line" system; tanker can trip the platform's SOST water displacement pumps
- Operating Limits West of Shetland 4.5 Hs for connection and 5.5m Hs
 Disconnection
- 22 x cargoes successfully offloaded to date
- Tanker operations around 36 hours from arrival Departure for a 240k bbl parcel...
- Winter period 2015 / 2016 as an example....26 days of nothing below a sea state of 3m Hs

Observations / Conclusions

- An ~3ookbbls stand-alone SOST project has been executed in the hostile WoS environment
- The concept can offer advantages to marginal fields especially
 - where tie-back ullage is unavailable
 - stand-alone FPSO/FSO schemes are high cost/unavailable
- A rigorous design approach will mitigate hazard & environmental risks
 - e.g. safe field layouts, a closed liquid system with caisson level control, detailed material selection, fatigue analysis, compartments etc..

AOB

