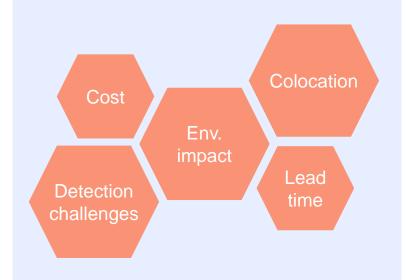
MMV SUBGROUP: Final report summary

NSTA Technology Showcase on Carbon Storage MMV NZTC

29.10.24

STOREGYA



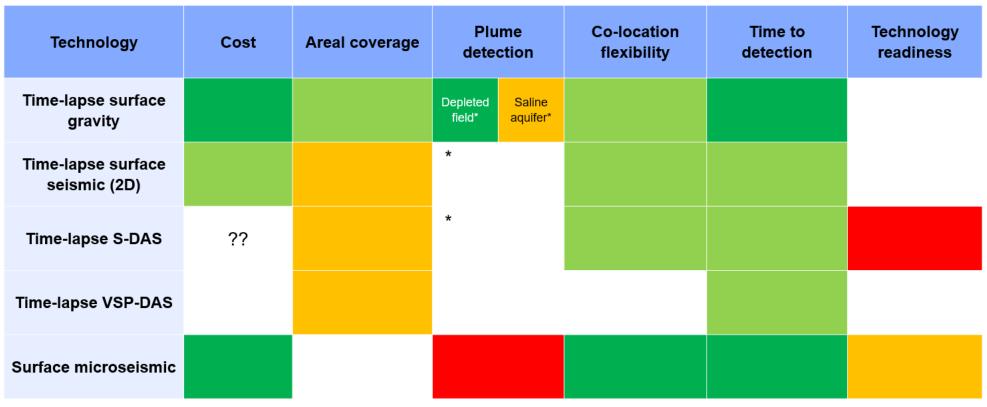
Project drivers and objectives

Today

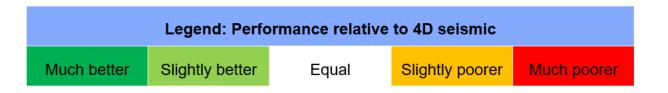
Repeat 3D (4D) seismic is routinely in core monitoring plans for CO₂ storage sites, but poses challenges:

Improved understanding of monitoring technologies that have the potential to reduce reliance on 4D seismic as a core monitoring tool, over the Track 1 and Track 2 stores.

Consider opportunities to improve resolution, reduce cost or environmental impact.


Enable viability testing of alternative technologies to reduce 4D challenges and maximise

success of CCS projects.



Recommended Technologies Comparison

^{*}Note the performance of time-lapse gravity vs 4D seismic regarding plume depends strongly on store type.

Recommended Technologies vs Store Options

Technology	Store Depth		Development Type		Seismic Response			Store Type	
	Shallow (~1000m)	Deep (~2000m)	Subsea	Platform	Good in store	Poor in store	Good in overburden	Saline aquifer	Depleted field
Time-lapse surface gravity									
Time-lapse surface seismic (2D)									
Time-lapse S-DAS									
Time-lapse VSP- DAS									
Surface microseismic									

Opportunities

1) Cost sharing

- Acquiring surveys in collaboration with other seabed users
- Cost and environmental benefits

2) Microseismic monitoring networks

 Potential for networks around closely spaced stores, including use of existing sensors and infrastructure

3) Data sharing

- Would facilitate faster learning and development
- Integral to leverage learnings from testing of any recommended technologies in this report

Future Recommendations

1) Desktop feasibility studies followed by field trials of the recommended technologies

- Multiple pathways joint industry projects, field trials, regulator-led studies (e.g. MMV seismic report)
- Potential use of third-party infrastructure to reduce costs and create monitoring network(s)

2) Continue conversation on future monitoring technologies

- E.g. Installation of fibre in subsea wells, electromagnetic surveys
- Industry-wide engagement on non-seismic methods (regulator led?)

3) Establish a framework for the sharing of data

- Encourage engagement with NSTA's call for evidence on data sharing consultation
- Sharing of interpretation method to create aligned approach