

Induced seismicity monitoring for offshore CCS

Steve Oates
Subject Matter Expert Borehole Geophysics

With thanks to all our partners in the HNET, ENSURE and SHARP collaborations.

Overview and introduction

- o Induced seismicity and the need for monitoring
- Outline of monitoring options onshore and offshore
- Example Quest CCS (in cooperation with ENSURE consortium)
- Example HNET (Northern Lights CCS) detection performance
- Conclusion

Induced seismicity and the need for monitoring

- Many examples of induced seismicity subsurface injection, gas production, fracking, heavy oil production, ground water extraction.
- Monitoring is a risk mitigation measure:
 - Usually a Regulatory requirement (implied or explicit).
 - May be a process safety requirement, dependent on Risk Assessment Matrix (RAM) analysis.
 - Bowtie risk framework: monitoring + Traffic Light response protocol (TLS) is an active barrier for threat mitigation

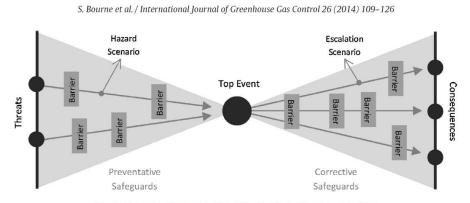
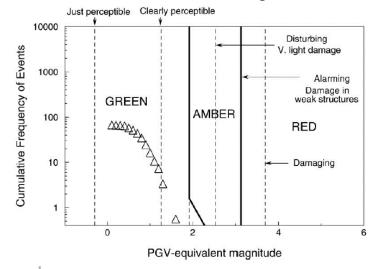



Fig. 3. Schematic illustration of the Bow-tie Method for risk mitigation.

- Provides instrumental data as input to TLS and to inform stakeholder engagements.
- What monitoring coverage is required?
 - MMV plan (Measure, Monitor, Verify) is risk-based to ensure safety and long-term effectiveness of CO₂ storage.
 - MMV plans are comprehensive and adaptable, based on updated risk assessments as storage operation evolves with time.
 - Overview of induced seismicity monitoring planning is given by Freudenreich, Oates & Berlang, Geophysical Prospecting (2012).

ommer, Oates, et. al./ Engineering Geology 83(4) (2006) 287

Acquisition options - onshore and offshore

Surface v. downhole

- Higher ambient noise and near surface losses for surface deployments.
- Downhole generally lower detection thresholds but more complex patterns of arrivals.

o Shallow boreholes v. deep wells

- Trade off cost/depth/noise.
- Hardware longevity issues with downhole electronics at reservoir temperature.

Ocean Bottom Seismometers: Cabled & trenched v. autonomous

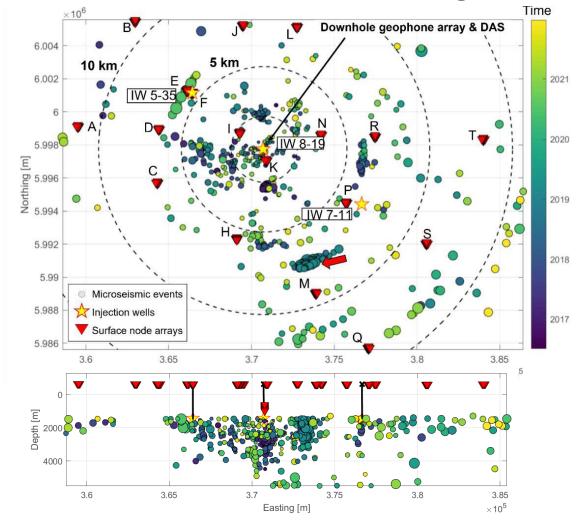
- Cabled system needed if real-time data is required; high Capex.
- Autonomous OBSs simple and cheap but data only available when harvested; high Opex

o Broadband seismometers v. accelerometers v. geophones v. DAS*

- Broadband units: high sensitivity and low self-noise.
- Force Balance Accelerometers: intermediate self-noise and flat frequency response.
- High frequency passive geophones: low frequency response roll-off and high self-noise.
- DAS: dense spatial sampling, large aperture and flat frequency response but high self-noise.

Individual stations v. arrays

Array processing enhances S/N & location performance but more acquisition effort & exposure



^{*}DAS = Distributed Acoustic Sensing. Uses laser pulses backscattered in a fibre to determine time-dependent strain, processed → seismogram.

Microseismic monitoring with hybrid network at Quest

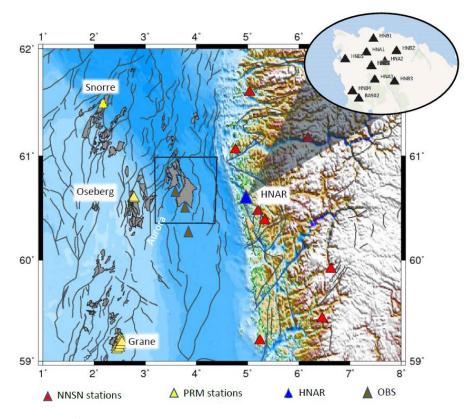
- 3 CO₂ injection wells connected by a pipeline to the Scotford facility.
- O Downhole array with 8 geophones in monitoring well on 8-19 well pad.
- o Downhole DAS system in 8-19 injector, close to the geophone well.
- o 17 surface arrays each comprising 9 autonomous geophone nodes.
- o Images show event locations up to December 2021.
- Events locate in the Precambrian Basement below the injection interval.
- In cooperation with ACT3 consortium project ENSURE.

8-19 well pad showing CO₂ injector with DAS, and geophone monitoring well

Surface node deployment

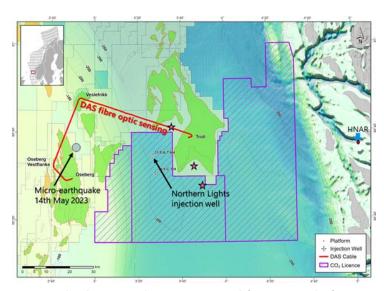
Northern Lights CCS & the HNET consortium project

o CLIMIT consortium project HNET – monitoring trials of particular relevance to near-offshore CCS projects such as Northern Lights

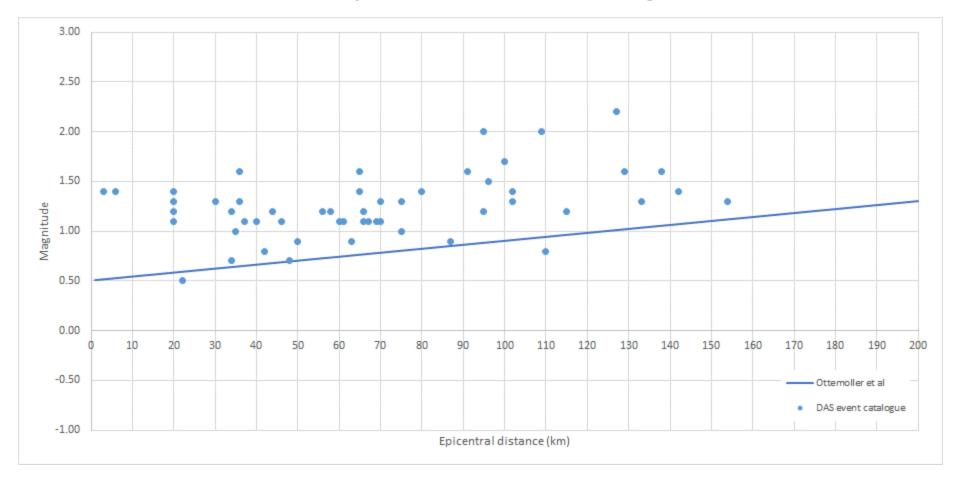


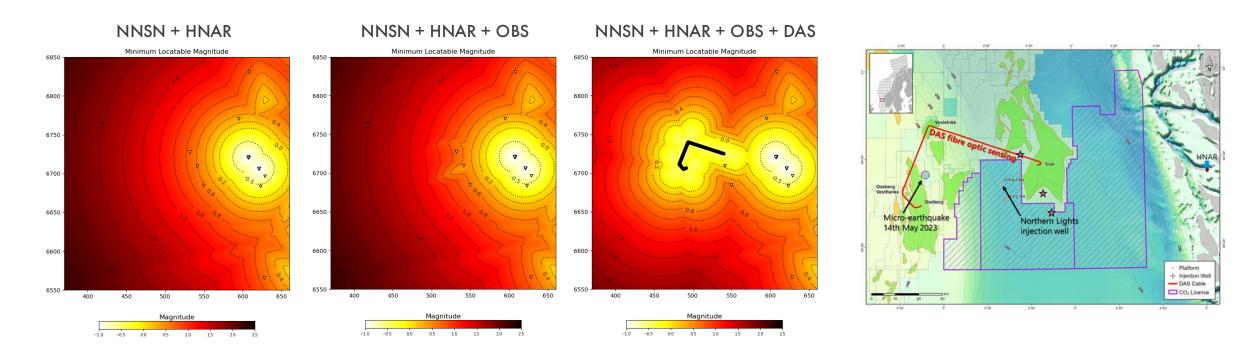
Northern Lights onshore facilities at Øygarden, Norway

HNET(3) field trials: OBSs, PRM nodes, on-shore array, and DAS with NNSN network


- HNET3: Ocean bottom seismometers (OBSs) and onshore HNAR array deployed to complement NNSN onshore seismometer network and PRM nodes: improve event detection & location over Northern Lights area.
- Seabed DAS trial used Troll telecomms fibre: detection performance comparable to NNSN

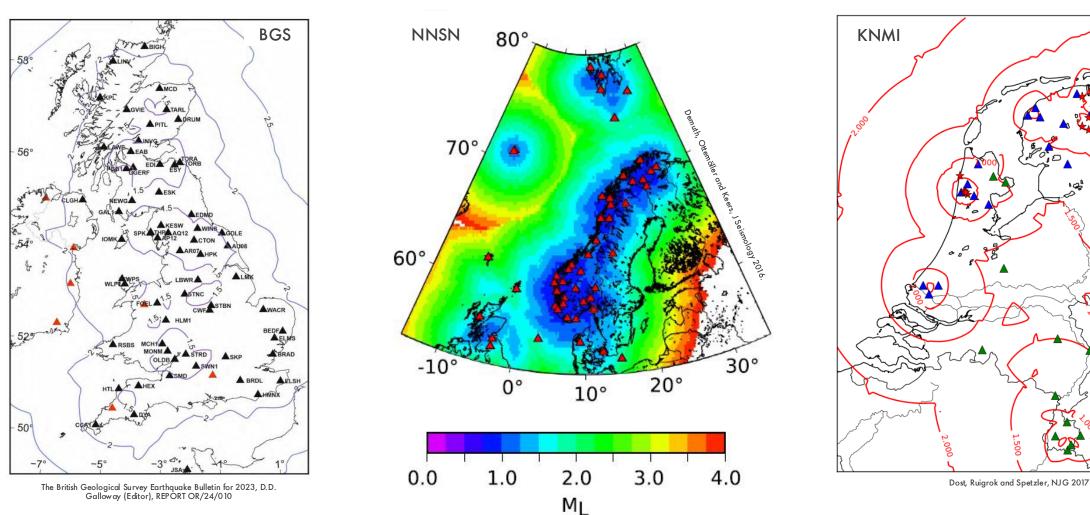
Zarifi, Z., et al. (2022). Background Seismicity Monitoring to Prepare for Large-Scale CO2 Storage Offshore Norway, Seismol. Res. Lett. 94 (2A): 775–791. doi: https://doi.org/10.1785/0220220178
Bremaud, Rebel, Lemaistre & Vernier (2023). Capabilities of Fiber Optics Deployed at Seabed for Microseismic Monitoring: Northern Lights Case Study. EAGE GET 2023.




Seabed DAS trial. Data acquired for a period of 9 months using an interrogator connected to the comms fibre at the Troll platform. See also Bremaud et al.

Seabed DAS & NNSN - comparison of detection thresholds

- HNET3 seabed DAS data compared with onshore Norwegian National Seismic Network (NNSN) detection function
- See similar detection thresholds (caveat points show the NNSN catalogue events also visible on the DAS data)



Detectability threshold modelling for hybrid NL networks (NNSN, HNAR, OBS & DAS)

- Maps of smallest magnitude for which P & S arrivals can be picked above the noise on 3 or more stations for events at 15km depth.
- Modelling shows:
 - onshore NNSN + HNAR network provides remarkably good coverage offshore due to low noise at station locations;
 - inclusion of OBS units has limited impact on detection performance (but improves location performance);
 - inclusion of seabed DAS in the hybrid network significantly improves detection thresholds around Northern Lights concession area.
- Noise levels from field trials: NNSN & HNAR (onshore): 4*10^-9 m/s; OBS & DAS (seabed): 4*10^-8 m/s.

Minimum locatable magnitude around N Sea – onshore networks

Maps of (modelled) minimum locatable magnitude for the UK, Norway and Netherlands networks.

Conclusions

- o Field trials at Quest and Northern Lights show how hybrid networks can address the monitoring challenges we face.
- Different types of sensors complement each other when used together, extending coverage and improving detection and location performance:
 - surface, near-surface, downhole;
 - seismometers, accelerometers, geophones, DAS;
 - cabled, autonomous.
- Near-offshore acceptable coverage can be achieved with onshore networks/arrays + a few carefully chosen offshore stations + possibly seabed DAS.
- Using existing telecoms cables for seabed DAS may be an option and avoids need for deployment and trenching.
- Detailed planning requires numerical modelling of detection and location performance of individual elements and network as a whole.
- The experience gained at HNET is directly applicable to the near-offshore projects in the UK and The Netherlands.
- High value of CLIMIT and ACT3 consortium projects HNET, ENSURE and SHARP.

Definitions & cautionary note

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this presentation "Shell", "Shell Group" and "Royal Dutch Shell" are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words "we", "us" and "our" are also used to refer to Royal Dutch Shell plc and its subsidiaries in general or to those who work for them. These terms are also used where no useful purpose is served by identifying the particular entity or entities. "Subsidiaries" and "Shell subsidiaries" as used in this presentation refer to entities over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has joint control are generally referred to as "joint ventures" and "joint operations", respectively. Entities over which Shell has significant influence but neither control nor joint control are referred to as "associates". The term "Shell interest" is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in an entity or unincorporated joint arrangement, after exclusion of all third-party interest.

This presentation contains forward-looking statements (within the meaning of the U.S. Private Securities Litigation Reform Act of 1995) concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management's current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management's expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as "aim", "ambition", "anticipate", "believe", "could", "estimate", "expect", "goals", "intend", "may", "objectives", "outlook", "plan", "probably", "project", "risks", "schedule", "seek", "should", "target", "will" and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation); (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell's products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (i) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (1) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; (m) risks associated with the impact of pandemics, such as the COVID-19 (coronavirus) outbreak; and (n) changes in trading conditions. No assurance is provided that future dividend payments will match or exceed previous dividend payments. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell's Form 20-F for the year ended December 31, 2023 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward-looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 29 October 2024. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that the United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov.

12

Copyright of Shell Global Solutions International

