

Glass-Based solutions for Barrier Repair, Decommissioning and Carbon Storage

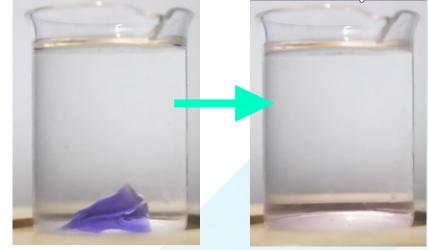
For: Accelerated Deployment workstream of the Technology Leadership Board

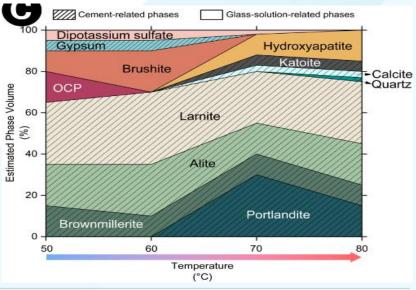
Date: 19 May 2025

Max Olsen

Email: max.olsen@vitritech.co.uk

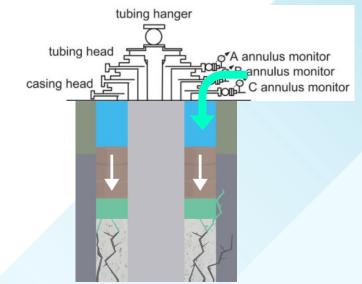
Ragni Hatlebakk

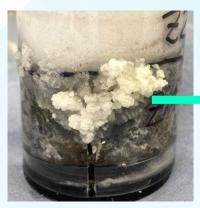

Email: ragni.hatlebakk@vitritech.co.uk


Website: https://www.vitritech.co.uk/

Injectable, Reactive, and Durable Mineral Sealing System

- Stable, low viscosity and <35 µm particle size solution enables injection into micro-annuli and <1 mD permeability zones.
- Acidic solution that upon contact with calcium in cement and reactive rock forms stable minerals (e.g., hydroxyapatite, brushite) that bind to cement, steel, and formations.
- Forms naturally occurring, geochemically stable mineral phases with well-documented behavior in subsurface and biological systems.
- Mineral growth expands post-set when exposed to water or brine;
 fills larger voids and reseals fractures after damage.
- Demonstrated repeated self-healing under brine and nitrogen gas exposure.


Targeting High Cost and Critical Integrity Challenges in CO₂ Wells and Decommissioning


Challenges Addressed:

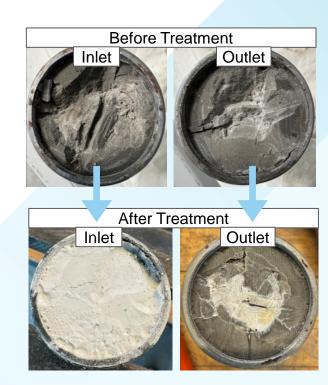
- Sustained Casing Pressure (SCP) and annular leakage in legacy and repurposed wells
- Cement degradation from carbonic acid and thermal cycling
- High abandonment and repurposing costs due to section milling and sidetracking

Solution:

- Penetrates inaccessible leakage paths with a low-viscosity, mineral-forming fluid.
- Forms expanding, self-healing durable minerals that can create barriers in accordance with OEUK and NORSOK requirements under temperature cycles and acidic environments
- Increase cements resistance to carbonic acid and stops the carbonation process

Why This Is Better Than Today's Options

Traditional Cement	Resin Sealants	Geopolymers & Alt. Cements (wide range with some promising solutions)	VitriSeal Glass-Based Solution
Poor injectability	Environmental / Hazardous issues	Limited injectability	Proven micro-annulus and low permeability injection and sealing
Prone to CO ₂ degradation	Limited understanding of material, Uncertain CO ₂ durability and lifetime	Range of resistance to acidic fluids (none to strong)	Acid-resistant minerals
Shrinkage	No self-healing	Minor expansion, No self- healing	Self-healing + expanding mineral growth
Sensitive to downhole contamination	High cost, some two-part systems, sensitive to contamination	Placement issues under temperature (Geopolymers), limited field use	Simple, low-cost deployment, not sensitive to downhole contamination


Field Readiness & End User Benefits

Field Readiness:

- Validated in 5 North Sea field trials with AkerBP with related glass-based fluid system
- Single-fluid system compatible standard pumping equipment (cement units, mud tanks, coil tubing).
- Safe for deployment in Norwegian North Sea operations. (HOCNF Green & Yellow)

End-User Value:

- Repairs and strengthens cement to withstand thermal cycling and CO₂.
- Prevents Sustained Casing Pressure (SCP) and long-term barrier failure in both injection and legacy wells.
- Eliminates need for costly section milling, sidetracks, or full plug replacements.
- Cuts repurposing and abandonment costs, accelerates CCUS deployment and decommissioning.
- Reduces leakage risk and future liability in CO₂ storage and P&A zones

Glass-based solutions that extend well life, reduce abandonment costs, and enable secure long-term CO₂ storage

Check out our SPE papers:

- SPE-205155 "The use of controlled dissolution glass to consolidate a high porosity chalk"
- SPE-205445 "The use of controlled dissolution glasses to consolidate and create permeable or impermeable minerals in formation"
- SPE-218426 "Extensive Testing of Glass-based Chemical Consolidation on Carbonate Reservoir"
- SPE-223669 "Assessing A Novel Glass-based Fluid For Annular Barrier Remediation In Cemented Well Sections"

Ragni HatlebakkHead of Research and Development

ragni.hatlebakk@vitritech.co.uk

Max Olsen Head of Business Development

max.olsen@vitritech.co.uk

www.vitritech.co.uk

