

Technology Managers' Network Meeting Smart Technology Showcase

APS Turbocharging Fluid Separation

19th May 2025

Best available technique • Best environmental practice • Improved energy impact factor

The Challenges

- Increasing environmental focus
- Tightening regulations
- Diminishing field economics
- New fields ties
- Increasing water cuts
- PW Bottlenecking
- PWRI

APS Value Proposition

- Reduce OIW overboard
- Improve PWRI performance
- Debottleneck produced water
- Ensure capacity for future tie-ins
- OPEX or CAPEX options
- Short lead-times
- Turbocharges the performance of <u>existing separation</u> <u>process</u>

Mobile Rental Equipment

Produced Water Separation Challenges

Traditional Gas Flotation

- Poor performance
 - Single bubble size / one size fits all approach
 - Gas concentration not controllable
- Low fluid throughput (inline application & size/weight)
- Adversely affected by system slugging

Filtration

- Low fluid throughput (inline application & size weight)
- Unsuitable for high solid loading
- High consumable costs
- Waste generation onshore shipping and disposal
- Manual handling / exposure risk

- Side stream and recirculation application
- Small size, low weight.
- Uses existing client process vessels.
- Generates <u>and controls</u> DGF and IGF bubble sizes, and combination of both.
- Can be applied between primary, secondary and tertiary separation process
- Single unit treats up to 140,000bwpd

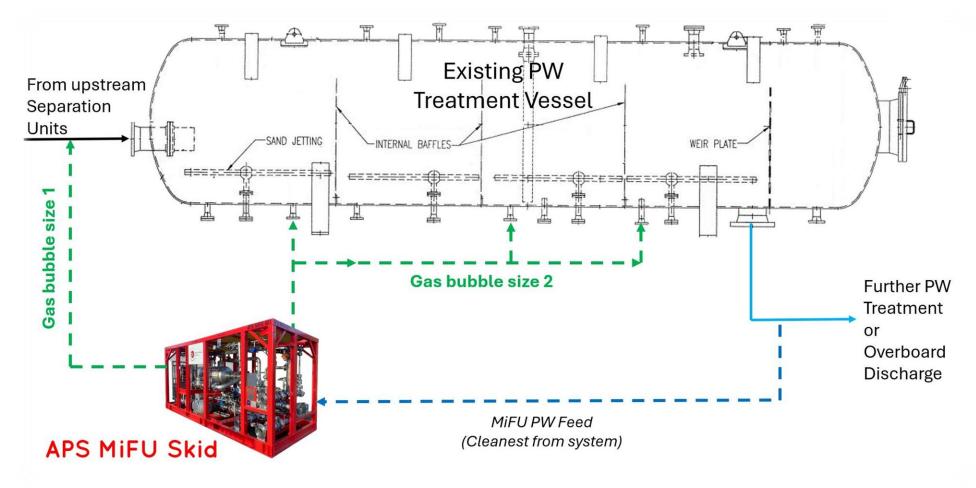
Technical Features

- Ease of retrofit
- Dissolved Gas Flotation (DGF)
- Induced Gas Flotation (IGF)
- Combination of both DGF and IGF
- Fully automated
- Light weight, small footprint
- DNV 2.7.1
- ATEX Zone 1 Rated
- No consumables / waste
- Cost competitive
- Derisked application small scale test units

How does the Technology Work?

- Portion of cleanest water is taken from separation process to act as MiFU[™] feed water.
- MiFU[™] generates microbubble infused water and reinjects to multiple points on existing process.
- Microbubble size matched to contaminant (oil droplet / solid particle).
- Microbubbles attach to contaminant improving contaminant rise rate and removal efficiency.
- Different sized microbubbles can be applied to different points on process to match contaminant sizes or further improve rise rate.

How do APS validate the Technology?



- Validate microbubble flotation prior to MiFU™ deployment
- Small-scale microbubble flotation testing
 - Offshore laboratory benchtop analysis
 - PW plant testing (sample point connection)
- Contaminant size distribution
- OIW /Suspended solids concentration
- Test and select deoilers
- Establish MiFU™ tie in points, laydown areas and utilities

Example MiFU Tie-In

- → Portion of produced water is taken from process to act as MIFU feed water

- MIFU generates microbubble infused water (MIW)
- - → MiFU discharges MIW to multiple points on existing process

Case History ble Infusion FPSO, North Sea UK Sector

Challenges

- OIW discharge to sea >100mg/L
- Production compromised
- Heavy oil wet solids
- Slop / cargo tanks utilised to increase fluid separation retention time to achieve discharge limit
- Severe process slug flow
- Multiple technologies previously trialled to reduce OIW

Objectives

 Achieve a "step change reduction" in OIW to sea without the need to use slops / cargo tanks

Case History FPSO, North Sea UK Sector

MiFU Application

- STEP Survey identified microbubble size and qualified chemical pre-trial
- Multiple injection points to client degasser vessel

Trial Results

- Surpassed OSPAR OIW regulatory discharge limit
- Able to direct overboard year round
- Unaffected by sea state
- Unaffected by system slugging

^{*}Additional injection point (unavailable during trial) and Gas Water Ratio optimisation (supply chain limitation) and switch to fuel gas would have yielded further removal efficiency (nitrogen in use for trials)

info@adaptiveprocess.solutions

www.adaptiveprocess.solutions